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Outline
 Fuel Cell Types and Related Separators
 PEM Fuel Cell Types

Hydrogen PEMFC
Direct Methanol PEMFC
Other: Alkaline, Alternative Fuels

 Membrane Requirements
 PFSA Membranes
 Hydrocarbon Membranes
 Challenges and Future Directions
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Fuel Cell Types

http://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/fc_types.html#comparison
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PEM Fuel Cells
 Polymer Electrolyte Membrane Fuel Cells

H2 or methanol fuel
 Stored, or from reformed hydrocarbons

Relatively low temperature operation
 60-90 oC is typical
 80 oC for H2 PEM

Solid polymer separator (membrane)
 Proton conductive
 Mechanically strong
 Hydrolytically and oxidatively stable
 Low in-plane swelling
 Low fuel and oxidant cross-over
 Electrically insulating
 Inexpensive (~10m2 membrane / vehicle)
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PEM Requirements – “A Tough Challenge”

*DuPont technical data sheet for Nafion® NR-211 membrane.
**Retail price for NR-211 from Ion Power, Inc on 10/29/2008 (www.ion-power.com)
***US DOE target for automotive applications.

†

† www.hydrogen.energy.gov/pdfs/progress07/v_m_5_foure.pdf

a

a Zhang, J., et.al., J. Power Sources, 2006, (163), 532-537.
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Membrane Types
 Membrane Chemistry

PFSA
 Perfluorinated copolymers

Hydrocarbon
 Aromatic backbone copolymers
 Aliphatic backbone copolymers
 Polymer blends
 Controlled-architecture (block and graft copolymers)

 Application
H2 PEM – Stationary
H2 PEM – Automotive
H2 PEM – Portable (backup power)
DMFC
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PFSA Membranes
 Perfluorinated Sulfonic Acid

Nafion®

A single copolymer
Developed (1963) for chlor-alkali applications

 Tetrafluoroethylene + perfluorinated vinyl ether
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IEC ~ 1.0 – 0.91 molH+/g
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PFSA Membranes
 Non-Nafion® PFSA Materials

Similar production process as Nafion®

Varied side-chain type

Nafion®

(DuPont)
Aciplex®

(Asahi 
Chemical)

Hyflon® Ion
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Grot, W., in “Perfluorinated Ionomers”, 2007, ISBN 978-0-8155-1541-8.

EW = grams of material / mol SO3H
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PFSA Membranes – In-Situ Performance
 Nafion® (DuPont)
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PFSA Membranes – State of the Art - Durability

 OCV Hold Accelerated Durability Testing*
 DOE Protocol*: 90 oC, O2, OCV, 30% RH
 Failure Criterion: 20% loss in OCV
 Chemical degradation leads to membrane thinning
 Typical PFSA membranes fail in 100-200h

 RH Cycling*
 DOE Protocol*: 25-50cm2 cell, 80oC, cycle air 2min./2min. @ 0/100% RH
 Failure Criterion: air crossover > 10sccm or 20,000 cycles
 RH cycling leads to mechanical membrane failure
 Only 1 PFSA membrane meets 20,000 cycle target (PFSA 111-IP)

Schiraldi, D.A., “Perfluorinated Polymer Electrolyte Membrane Durability”, J.Macromol. Sci., Part C: Polym. Rev., 2006, (46), 315–327.

Tang, H., et.al., “A Degradation Study of Nafion Proton Exchange Membrane of PEM Fuel Cells”, J. Power Sources, 2007, (170), 85–92.

*US DOE testing protocols, Funding Opportunity Announcement DE-PS36-08GO98009 (5/27/2008).
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PFSA Membranes – State of the Art – Overall

 Asahi Glass – New ‘NPC’ PFSA Membrane

Endoh, E., “Progress of Highly Durable MEA for PEMFC Under High Temperature and Low Humidity Conditions”, 2007 Fuel Cell Seminar Presentation.
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PFSA Membranes – “Wish List”

 Low EW Ionomer  Conductivity
 Mechanically Reinforced  Low Swelling
 Stabilized end groups  Chem. Stability
 Redox-active additive  Chem. Stability (in-situ)

 High conductivity at low RH  Auto. applications
 Low gas cross-over  High fuel utilization
 Inexpensive (<$20/m2)  Commercially viable 

Low RH conductivity and low cost are difficult for PFSAs
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Hydrocarbon Membranes
 Aliphatic Backbones

 sPS (GE, 1960s)
 Direct sulfonation of polystyrene
 Very inexpensive, simple to produce
 Oxidatively unstable
 Limited IEC range

BAM3G (Ballard)
 Copolymerization of α,α,β-trifluorostyrenes
 Better oxidative stability
 Limited IEC range
 Specialized monomer
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Hydrocarbon Membranes
 Aromatic Backbones

 sPEEK

 Direct sulfonation of engineering thermoplastic

BPSH

 Copolymerization of pre-sulfonated monomers

Sulfonated polyarylsulfide (sulfone)

 Copolymerization / sulfonation of intermediates
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Hydrocarbon Membranes
 Random Copolymers

Advantages
 Potentially very low cost
 Increased chemical durability

Disadvantages
 Direct sulfonation ~ limited in-situ stability

 Pre-sulfonation / copolymerization necessary
 Limited sulfonate content

 Swelling / conductivity tradeoff
 Rapid drop in proton conductivity at reduced RH

 Block Copolymers
Control size of hydrophilic domains

 Increase local concentration of acidic functionality
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Hydrocarbon Membranes
 BPSH Random Copolymers
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Hydrocarbon Membranes
 Controlled Morphology

Polymer architecture determines phase-separated morphology

McGrath, J.E., et.al., Macromol. Symp., 2006, (245-246), 439-449.
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Hydrocarbon Membranes
 Controlled Morphology

Polymer architecture determines phase-separated morphology
BPSH block copolymers

Einsla, M.L., et.al., Chem. Mater, 2008, 20, 5636-5642.
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Hydrocarbon Membranes

 Water diffusion coefficient comparison for BPSH 
materials

 Critical for proton transport

Einsla, M.L., et.al., Chem. Mater, 2008, 20, 5636-5642.
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Hydrocarbon Membranes – Arkema’s Approach
 Polymer blend system

 Decouple proton conductivity from 
mechanical requirements

 Kynar® PVDF
 Commercial product
 Mechanical support
 Chemical resistance
 Electrochemical stability

 Polyelectrolyte
 H+ conduction

 Process Flexibility
 A lower-cost approach

 Kynar® PVDF - commercial product
 Polyelectrolyte – minor component

Polyelectrolyte Kynar®

Blending

Casting

Membrane

http://www.hydrogen.energy.gov/pdfs/review08/fc_12_goldbach.pdf
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Arkema M41: BOL Performance

 Comparable in-cell performance to Nafion® 111 demonstrated
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Arkema M41 – OCV Durability

 Short resistance decreases for PFSA and M41 membranes
 No fluoride and low sulfate emission from M41
 H2 cross-over remains very low at failure for M41
 Fluoride emission and H2 cross-over from PFSAs
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Arkema M41: RH Cycling

 Nafion® NRE-211 failed at approximately 6,000 cycles
 M41 and PFSA 111-IP MEAs met target of 20,000 cycles
 M43 (improved M41 MEA) has exceeded 50,000 cycles
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State of the Art – Availability

 PFSA Membranes
 Nafion® (DuPont) - Widely available

 Distributed in film and dispersion form
 www.ion-power.com

 Hyflon® Ion
 Available from manufacturer - Solvay-Solexis

 Flemion®

 Aciplex®

 3M Ionomer

 Hydrocarbon Membranes
 PolyFuel Inc. – DMFC membranes to OEMs only
 Arkema – to customers/collaborators under NDA only
 BPSH – University project(s) – not commercial scale

Not as widely distributed
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State of the Art – All Membranes

 PFSA Membranes
 Asahi Glass – NPC PFSA
 Nafion® XL – reinforced Nafion® PFSA

 Hydrocarbon Membranes
 BPSH block copolymer membranes (VA Tech, J. McGrath)
 Arkema – M41 PVDF blend membranes
 FumaTECH – FumaPEM P,E,K series membranes
 PolyFuel Inc. – DMFC membranes
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PEM Requirements – “The Automotive Challenge”

US DOE HFCIT – High Temperature Membrane Working Group published targets.
http://www1.eere.energy.gov/hydrogenandfuelcells/htmwg.html#targets
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PEM Requirements – “The Automotive Challenge”

 Proton Conductivity

0 20 40 60 80

US DOE HFCIT – High Temperature Membrane Working Group presentation – T. Greszler, “Membrane Performance 
and Durability Overview for Automotive Fuel Cell Applications”, September 14, 2006.

http://www1.eere.energy.gov/hydrogenandfuelcells/2006_htmwg_archives.html
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Summary

 PEM fuel cell membranes must meet many challenges
 Nafion® is widely-distributed
 Alternatives in varying degrees of commercialization
 Many chemistries possible with hydrocarbon materials
 Application defines membrane properties

Automotive – stringent performance and durability requirements
Stationary / Backup – durability is critical
Portable – high fuel utilization is critical (DMFC)

 Rapid property screening and optimization needed
 LOW COST will be the key!
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