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IInstability for nstability for MMechanical echanical MMeasurementseasurements

● Mechanical 
measurements obtained 
from periodicity of 
corrugations on thin 
silicone sheet.

● Applicable to academic 
systems, e.g.
polystyrene films, as 
well as formulations.

A non-contact technique to measure 
the mechanical properties of thin films

No StrainWith Strain
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Mechanical Properties of Thin Films: The NeedMechanical Properties of Thin Films: The Need

● The COATINGS industry, which tailors its dispersions or optical 
layers to be of designated mechanical properties.

● The SEMICONDUCTOR industry, which depends upon thin films 
of photoresist to be mechanically stable.

● The OPTICAL ADHESIVES industry, which sell glues with 
SPECIFIED mechanical properties and used in THIN FILMS.

Who Would Benefit?

There is a need for a simple, robust, and flexible measurement 
technique for the mechanical properties of thin polymer films.
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Conventional TechniquesConventional Techniques

● The properties of the coating are measured in bulk, using A Dynamic 

Mechanical Analysis (DMA) or Instron-like device OR
● Depth Sensing Indentation instruments, or Mechanical Property 

Microprobes Measure are employed, to MEASURE
● Young’s Modulus

● Yield Stress - creep

● Visco-elastic recovery 

● Cracking thresholds

● Adhesive/interfacial energy
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Thin Film Fabrication TechniquesThin Film Fabrication Techniques
Flow Coating

∆x

PDMS elastomer support

polymer thin film

Force

Spin Coating

Lift-Off onto PDMS

SILICON

PDMS

WATER
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a) Film buckling on strained PDMS

061902.017compression
strain

SALS of Buckled FilmSALS of Buckled Film
b) AFM image of film (wavelength = 

6 µm, amplitude 0.3 µm.

c) Light scattering d) Data acquisition
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Strain Induced Compression Triggers Strain Induced Compression Triggers 
Mechanical InstabilityMechanical Instability

● SIEBIMM directly measures the Young’s modulus WITHOUT 
material-dependent modeling.

● As SIEBIMM is a LOCAL measurement, multiple samples can be 
placed on one silicone sheet for independent analysis.  
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The buckling wavelength, d, is directly determined by the 
film thickness h, and moduli of the silicone and polymer film.
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1. Insensitivity of Measured Modulus to Strain1. Insensitivity of Measured Modulus to Strain

● Even for 
glassy/brittle 
polystyrene, 
modulus 
measurement 
relatively 
insensitive to 
strain 
(for strain < 5%).

● Measurements 
typically made at 
lowest strain that 
triggers instability.
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2. Sensitivity of Measured Modulus to Strain2. Sensitivity of Measured Modulus to Strain

● Large strains (>5%) 
will crack polymer 
film, altering its 
properties and hence 
the measured 
modulus.

● Critical strain 
depends upon both 
support and film 
moduli; we tune the 
support modulus to 
minimize the critical 
strain.
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Thickness Gradient Demonstration
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Effect of Thickness on Buckling Wavelength

Color Image:Dscn2440.jpg
Optical micrographs: thinnest, middle, thickest
From directory  090502

140 nm 280 nm
a

dcb

y
x

y
x

d=7 µm d=13 µmd=10 µm

50 µm



6

Polymers
Materials Science
and Engineering

Polymers
Materials Science
and Engineering

SIEBIMMSIEBIMM

Measurements of Polystyrene FilmsMeasurements of Polystyrene Films

● First test: We examined a 
thin PS film with a 
thickness gradient.  We 
found that the buckling 
wavelength d increased 
varied linearly with the 
thickness. 

● Observations in full 
agreement with sandwich 
theory. 160 200 240

0

1

2

3

4

08140205
M

od
ul

us
 (G

Pa
)

Thickness (nm)

8

10

12

 B
uc

kl
in

g 
W

av
el

en
gt

h 
(µ

m
)

Polymers
Materials Science
and Engineering

Polymers
Materials Science
and Engineering

SIEBIMMSIEBIMM

Compression Initiates Mechanical InstabilityCompression Initiates Mechanical Instability
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Bending of a Beam:Differential Equation

w is the distance the plate is deflected from neutral plane
D is the flexural rigidity of the plate
P is the tensile force in the beam
bσz is the shear stress force

Compressive
Force PPDMS

Wavelength λ=d

P
z

x

w(x), local wrinkling displacement in z direction, amplitude wm

Polymer film
thickness h,

Width b
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Analysis of A Buckled Laminate

x
d

ww m
π2sin=

Suppose the Strut Buckles into Sinusoidal Waves – plug in:

Suppose perfect adhesion, and that the necessary stress is:
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Analysis of A Structural Sandwich: 
Mechanical Instability

12
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We rearrange, and solve for the critical LATERAL stress σ

So now we ask: 
what h/l value 
minimizes the 
lateral stess?
This is somewhat 
of an energy 
minimization 
condition d/h

σc

σ
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Analysis of A Structural Sandwich: 
Mechanical Instability
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We rearrange, and solve for the critical LATERAL stress σ

So now we ask: 
what h/l value 
minimizes the 
lateral stess?
This is somewhat 
of an energy 
minimization 
condition d/h

σc

σ
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Analysis of A Structural Sandwich: 
Mechanical Instability

We solve for the critical value of the lateral stress, σ, by the usual 
minimization condition.
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Buckling wavelength independent of strain and stress!
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SIEBIMM and PS/SIEBIMM and PS/PlasticizerPlasticizer

● Modulus 
measurement of 
plasticized 
polystyrene (dioctyl
phthalate blend).

● I-BIMM 
successfully 
follows decrease in 
modulus with 
plasticizer.
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SIEBIMM and Vector SSIEBIMM and Vector S--II--SS

● Young’s modulus of the film 
is tuned by the ratio of two S-
I-S polystyrene-polyisoprene 
triblock copolymers: Vector 
4215 (30% PS, more 
rubbery) to Vector 4411 
(44% PS, more glassy)

● Optically clear, miscible 
system - morphological 
transition has been observed 
by SAXS. AFM? 0.28 0.32 0.36 0.40 0.44

0

50

100

150

200

DIS
LAMCYL

Yo ung 's Mod ulus
Sta fford a nd Ha rrison  2 00 2
10 % Ve ctor 42 15 :44 11  

  G No  ann eal, no  v acu um.
 G N o an nea l, ov ern ig ht va cuu m.

Y
ou

ng
's 

M
od

ul
us

 (M
Pa

)

PS Volume Fraction

Polymers
Materials Science
and Engineering

Polymers
Materials Science
and Engineering

SIEBIMMSIEBIMM

Comparison of SIEBIMM to Comparison of SIEBIMM to InstronInstron
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Challenge: Releasing Polymer Films

Polymer films often adhere to substrates,
making their transfer to PDMS difficult.
However , there are some solutions:

● Use of salt plate as a substrate

● Silicon wafer substrate: PRE-coating wafer with a 
thin layer of soap aids in sample release upon 
aqueous immersion.

● Use of a non-sticky sacrificial layer, such as teflon
or gold.
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Gold Sacrificial Layer for Releasing Annealed Films

Gold on Si Wafer PDMS/Gold/Polymer

Gold Etchant Light Scattering

Polymer
PDMS

Gold
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10 µm

180oC93oC

Annealed Films: Crystallinity Gradient
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d.tif, e.tif, j.tif

Effect of Strain on Buckling Amplitude

● Buckling imaged by 
contact mode AFM, 100 
µm scans.

● Strain increases buckling 
amplitude A without 
strongly changing 
periodicity.

A=310 nm

A=125 nmA=3 nm
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Effect of Strain on Diffraction Pattern

● Buckling measured by 
small angle light 
scattering.

● Scattering intensity 
increases with strain, 
higher order peaks 
emerge.

● Little shift in peak 
position with strain. 0 5 10102
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SLITS

Diffraction Gratings: Classic ApproachDiffraction Gratings: Classic Approach

θ
d

dsinθ

dsinθ =mλ

m=1

Page 1055 HRW must be coherent source

● Illumination of grating by coherent illumination produces diffraction peaks

● Optical path difference for neighboring sources differs by multiple of λ
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Light Scattering by Sinusoidal Phase GratingLight Scattering by Sinusoidal Phase Grating

● Phase shift imparted on 
coherent light wave 
varies sinusoidally 
with position..

● Relative phase shift is 
Φ= +/-2π(nw0/λ)
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Effect of Strain on Buckling AmplitudeEffect of Strain on Buckling Amplitude

● Amplitude w0 depends 
non-linearly on lateral 
strain

● Wavenumber fixed

● Reversible, tunable 
amplitude
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Buckling Amplitude as a Function of StrainBuckling Amplitude as a Function of Strain

● Buckling amplitude 
depends non-linearly 
on strain.

● Calculation: 
numerical integration 
assuming pathlength
is constant.
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Diffraction Pattern of Sinusoidal Phase GratingDiffraction Pattern of Sinusoidal Phase Grating

In the Fraunhofer limit we are very, very far away, typically
one kilometer.  However, it is pedagogically useful.  The 
calculated diffraction intensity is:
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Purely sinusoidal 
phase grating 
produces many 
higher order peaks

m ~ w0
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Understanding the Diffraction PatternUnderstanding the Diffraction Pattern

......+ m ~ amplitude w0
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● Condition met for w0=200 nm, 
d=6 µm, Strain 1%.
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Formulation: Formulation: Norland Norland UV Curable AdhesiveUV Curable Adhesive
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Thickness Effects: Preliminary Data

● Polymer film 
dimensions comparable 
to Rg are increasing 
important as 
lithographic features are 
decreased.

● Films below 5 Rg 
exhibit a lower modulus.
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Applications to BiologyApplications to Biology

● Corrugations of polystyrene 
film induce a preferred 
direction in cells.

● Why care?
We can introduce the 
corrugations in an oscillatory 
fashion

● Template for papillae between 
dermal layers 

compression 

strain 

compression 

strain Amit Sehgal’s Cells

Polymers
Materials Science
and Engineering

Polymers
Materials Science
and Engineering

SIEBIMMSIEBIMM

Application to Formulations.Application to Formulations.

● This technique applies to 
colloidal dispersions of 
polyurethane particles (Bayer
Bayrol 123)

● Optical Image of Buckling on 
PDMS.
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Future DirectionsFuture Directions

SIEBIMM

Biological
Templating

Industrial
Applications

Processing/
Annealing History

Viscoelasticity

Nanocomposites
Nanotubes

Optical Effects

Polymers
Materials Science
and Engineering

Polymers
Materials Science
and Engineering

SIEBIMMSIEBIMM

Participants: Team SIEBIMMParticipants: Team SIEBIMM
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